

|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                          | Tool Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extension Team:                                                                                                                                                                                                                 | Plant Science                                                                                                                                                                                                                                                                            | Tool Version:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Author:                                                                                                                                                                                                                         | Dayton Spackman                                                                                                                                                                                                                                                                          | Last Updated:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Contact Email:                                                                                                                                                                                                                  | djs5487@gmail.com                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Website:                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description:                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| provides farmers, seed cor                                                                                                                                                                                                      | n companies and university personnel with inj                                                                                                                                                                                                                                            | uation of commercial corn grain and silage hybrids available in Pennsylvania. The corn hybrid evaluation program<br>formation on the relative performance of corn hybrids gorwn under Pennsylvania conditions. It should be used to<br>ance tests, other independent testing data, and on-farm performance records, when making hybrid selection                                                                                                                                                                       |
| Moisture or dry matter is a                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                        | tion of the proper hybrids for your operation. The first factor to consider when using this report is hybrid maturity.<br>Ith lower moisture or high dry matter are generally adapted to shorter season environments. Identify hybrids in the                                                                                                                                                                                                                                                                          |
| moisture and maturity. Sil<br>will help determine what f<br>choices. It is best to use do                                                                                                                                       | age has many quality factors that will vary fro<br>orage qualities will be best for your operation                                                                                                                                                                                       | on the qualities you are looking for on your operation. For grain, high yielding hybrids should be selected based on<br>m farm to farm. Dry matter is a good place to start when selecting a silage hybrid, but working with a nutritionist<br>. We do not recommend using data from a single site, even if it is close to your farm, to make hybrid selection<br>tab "Trait Key" contains all the commercial designation of individual traits. The "Table" tab will provide the                                       |
| moisture and maturity. Sil<br>will help determine what f<br>choices. It is best to use do                                                                                                                                       | age has many quality factors that will vary fro<br>orage qualities will be best for your operation<br>ita averaged over multiple locations. The last                                                                                                                                     | on the qualities you are looking for on your operation. For grain, high yielding hybrids should be selected based on<br>m farm to farm. Dry matter is a good place to start when selecting a silage hybrid, but working with a nutritionist<br>. We do not recommend using data from a single site, even if it is close to your farm, to make hybrid selection<br>tab "Trait Key" contains all the commercial designation of individual traits. The "Table" tab will provide the                                       |
| moisture and maturity. Sil<br>will help determine what f<br>choices. It is best to use do<br>company specific nomencl<br><b>References:</b>                                                                                     | age has many quality factors that will vary fro<br>orage qualities will be best for your operation<br>ta averaged over multiple locations. The last<br>ature, but the "Trait Key" will give a more in a<br>Alex Hristov (PSU Animal Sciences), Sergio Fro                                | on the qualities you are looking for on your operation. For grain, high yielding hybrids should be selected based on<br>m farm to farm. Dry matter is a good place to start when selecting a silage hybrid, but working with a nutritionist<br>. We do not recommend using data from a single site, even if it is close to your farm, to make hybrid selection<br>tab "Trait Key" contains all the commercial designation of individual traits. The "Table" tab will provide the                                       |
| moisture and maturity. Sil<br>will help determine what f<br>choices. It is best to use do<br>company specific nomencl<br><b>References:</b><br>This report is prepared by:<br>Science), Charlie White (PS                       | age has many quality factors that will vary fro<br>orage qualities will be best for your operation<br>ita averaged over multiple locations. The last<br>ature, but the "Trait Key" will give a more in a<br>Alex Hristov (PSU Animal Sciences), Sergio Fro<br>5U Plant Science)          | on the qualities you are looking for on your operation. For grain, high yielding hybrids should be selected based on<br>m farm to farm. Dry matter is a good place to start when selecting a silage hybrid, but working with a nutritionist<br>. We do not recommend using data from a single site, even if it is close to your farm, to make hybrid selection<br>tab "Trait Key" contains all the commercial designation of individual traits. The "Table" tab will provide the<br>lepth explanation of these traits. |
| moisture and maturity. Sil<br>will help determine what f<br>choices. It is best to use do<br>company specific nomencl<br><b>References:</b><br>This report is prepared by:<br>Science), Charlie White (PS<br>Acknowledgement of | age has many quality factors that will vary fro<br>orage qualities will be best for your operation<br>ita averaged over multiple locations. The last<br>ature, but the "Trait Key" will give a more in a<br>Alex Hristov (PSU Animal Sciences), Sergio Fro<br>SU Plant Science)<br>Risk: | on the qualities you are looking for on your operation. For grain, high yielding hybrids should be selected based on<br>m farm to farm. Dry matter is a good place to start when selecting a silage hybrid, but working with a nutritionist<br>. We do not recommend using data from a single site, even if it is close to your farm, to make hybrid selection<br>tab "Trait Key" contains all the commercial designation of individual traits. The "Table" tab will provide the<br>lepth explanation of these traits. |

# 2023 Penn State/PDMP Corn Silage Hybrid Performance Trial Results

Prepared by: Alex Hristov (PSU Animal Sciences), Sergio Francisco (PSU Animal Sciences), Chris Canale (Cargill), Hanna Wells(PSU Plant Science), Dayton Spackman (PSU Plant Science), Charlie White (PSU Plant Science)

Produced in cooperation with the Professional Dairy Managers of Pennsylvania (PDMP).

Visit Penn State's College of Agricultural Sciences on the Web: www.cas.psu.edu

Penn State College of Agricultural Sciences research, extension, and resident education programs are funded in part by Pennsylvania counties, the Commonwealth of Pennsylvania, and the U.S. Department of Agriculture.

This publication is available in alternative media on request. The Pennsylvania State University is committed to the policy that all persons shall have equal access to programs, facilities, admission, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by University policy or by state or federal authorities. It is the policy of the University to maintain an academic and work environment free of discrimination, including harassment. The Pennsylvania State University prohibits discrimination and harassment against any person because of age, ancestry, color, disability or handicap, national origin, race, religious creed, sex, sexual orientation, or veteran status. Discrimination or harassment against faculty, staff, or students will not be tolerated at The Pennsylvania State University. Direct all inquiries regarding the nondiscrimination policy to the Affi rmative Action Director, The Pennsylvania State University, 328 Boucke Building, University Park, PA 16802-5901, Tel 814-865-4700/V, 814-863-1150/TTY.

Where trade names appear, no discrimination is intended, and no endorsement by Penn State Cooperative Extension is implied

c The Pennsylvania State University 2015

# Production Details: Penn State/PDMP Corn Silage Hybrid Evaluation Trials

| Site:              |       | Williamsburg, PA   |
|--------------------|-------|--------------------|
| Cooperator         |       | Penn England Farms |
| Planting Date      |       | 5/19/2023          |
| Soil Type          |       |                    |
| Herbicides         | pre-  |                    |
|                    | post- |                    |
| Previous Crop      |       |                    |
| Tillage            |       |                    |
| Starter Fertilizer |       |                    |
| Insecticide        |       |                    |
| Manure             |       |                    |
| Fertilizer         |       |                    |
| Harvest Date       |       | 9/19/2023          |

## Field Summary:

This site had good emergence, good weed control and fertility. Insect pressure was minimal. There was some gray leaf spot at harvest, but it was minimal and not yield limiting.

| Weather Summa  | ary:              |              |
|----------------|-------------------|--------------|
| Month          | Precip. In.       | GDD          |
| May 19-31      | 0.10              | 154          |
| June           | 5.10              | 456          |
| July           | 5.60              | 703          |
| August         | 4.90              | 625          |
| September 1-19 | 0.90              | 329          |
| Seasonal Total | 16.60             | 2267         |
| Precip. Data:  |                   |              |
| GDD data:      | http://climatesma | artfarming.o |

### Penn State/PDMP Corn Silage Hybrid Testing Program 2023 Medium maturity (100-110) day RM silage hybrids in Williamsburg, PA



PennState Extension Professional Dairy Managers of Pe

Notes: SEE BACKGROUND TAB

Cooperator: Penn England Farms

|                         |                    |                     |            |                  |                |            |            | NIRS <sup>3</sup> |              |            |              | <b>FDMS</b> <sup>4</sup> |              | WC⁵                  |                      |                      |                      |                 |
|-------------------------|--------------------|---------------------|------------|------------------|----------------|------------|------------|-------------------|--------------|------------|--------------|--------------------------|--------------|----------------------|----------------------|----------------------|----------------------|-----------------|
|                         |                    |                     |            |                  |                | Crude      |            | -                 |              |            |              | uNDF                     | NDFD         |                      | Fresh                | ом                   | DOM                  |                 |
|                         |                    |                     | Relative   | Рор.             | Dry Matter     | Protein    | Lignin     | Ash               | Starch       | TFA        | NDFom        | 240 hr                   | 30           | IVSD                 | Yield                | Yield                | Yield                | OMD             |
| Brand                   | Hybrid             | Traits <sup>1</sup> | Maturity   | Plants/ac        | % <sup>2</sup> | %DM        | %DM        | %DM               | %DM          | %DM        | %DM          | %DM                      | %NDF         | %Starch <sup>6</sup> | tons/ac <sup>7</sup> | tons/ac <sup>8</sup> | tons/ac <sup>9</sup> | % <sup>10</sup> |
| 99-105 day hybrids      |                    |                     |            |                  |                |            |            |                   |              |            |              |                          |              |                      |                      |                      |                      |                 |
| Kings Agriseeds         | RT 53T49-D2        | 15                  | 103        | 34,000           | 39.5           | 8.1        | 3.2        | 2.5               | 42.8         | 3.1        | 33.6         | 12.3                     | 50.6         | 50.6                 | 25.6                 | 8.7                  | 4.8                  | 54.8            |
| Kings Agriseeds         | RT 55T79-D1        | 14                  | 105        | 34,000           | 37.5           | 7.5        | 3.1        | 2.7               | 41.0         | 2.7        | 33.7         | 12.2                     | 50.9         | 53.5                 | 22.8                 | 7.8                  | 4.4                  | 56.0            |
| Growmark FS             | FS 5115X RIB       | 32                  | 101        | 34,000           | 36.5           | 7.7        | 3.0        | 2.5               | 43.3         | 2.9        | 31.7         | 11.6                     | 49.8         | 51.6                 | 24.9                 | 8.5                  | 4.7                  | 54.9            |
| Hubner                  | H9953P             | 35                  | 99         | 34,000           | 35.6           | 7.6        | 3.2        | 2.7               | 41.6         | 2.7        | 33.6         | 12.7                     | 49.3         | 49.8                 | 23.1                 | 7.9                  | 4.2                  | 53.6            |
| Hubner                  | H0475P             | 35                  | 104        | 34,000           | 35.2           | 7.3        | 2.9        | 2.7               | 43.5         | 3.0        | 31.8         | 10.9                     | 53.3         | 54.8                 | 22.8                 | 7.8                  | 4.5                  | 57.6            |
| Revere Seed             | 0518 VT2PRIB       | 43                  | 105        | 34,000           | 35.1           | 7.1        | 3.2        | 2.4               | 40.6         | 2.5        | 34.8         | 12.7                     | 49.7         | 54.5                 | 22.4                 | 7.7                  | 4.3                  | 55.8            |
| Chemgro                 | 6434PC             | 27                  | 104        | 34,000           | 34.3           | 7.6        | 2.7        | 2.8               | 42.8         | 2.5        | 31.2         | 10.5                     | 52.6         | 58.6                 | 25.0                 | 8.5                  | 5.0                  | 59.4            |
| Masters Choice          | MCT5375-AT         | 11                  | 103        | 34,000           | 34.2           | 7.7        | 3.4        | 2.8               | 38.0         | 2.5        | 35.1         | 13.4                     | 48.2         | 52.0                 | 22.6                 | 7.7                  | 4.2                  | 54.3            |
| Kings Agriseeds         | RT 51T86-PC        | 25                  | 101        | 34,000           | 32.0           | 7.5        | 3.7        | 3.2               | 38.2         | 2.6        | 37.5         | 14.8                     | 48.2         | 56.5                 | 22.5                 | 7.6                  | 4.3                  | 55.9            |
| Channel                 | 204-54SSPRIB       | 35                  | 104        | 34,000           | 31.5           | 7.5        | 3.3        | 2.8               | 39.1         | 2.8        | 35.4         | 13.5                     | 50.0         | 52.6                 | 23.0                 | 7.8                  | 4.3                  | 55.2            |
| Seed Consultants        | SC1042Q            | 28<br>28            | 104<br>105 | 34,000<br>34,000 | 31.2<br>30.9   | 8.0        | 3.5<br>3.0 | 3.0<br>2.9        | 34.5<br>38.9 | 2.4<br>2.5 | 38.3<br>32.9 | 14.4<br>11.9             | 50.4<br>52.0 | 58.0<br>53.3         | 24.7<br>22.5         | 8.4<br>7.6           | 4.8<br>4.3           | 57.8<br>56.7    |
| Brevant                 | B05C33Q            | 28                  |            | ,                | 30.9<br>34.5   | 8.4<br>7.7 | 3.0        | 2.9<br>2.8        | 38.9<br>40.4 | 2.5        |              | 11.9                     | 52.0<br>50.4 | 53.3<br>53.8         |                      | 7.6<br>8.0           | 4.3<br>4.5           | 56.7            |
| 106-110 day hybrids     |                    |                     | 99-105     | day means        | 34.5           | 1.1        | 3.2        | 2.8               | 40.4         | 2.7        | 34.1         | 12.0                     | 50.4         | 55.8                 | 23.5                 | 8.0                  | 4.5                  | 50.0            |
| Growmark FS             | FS 6017V RIB       | 43                  | 110        | 34,000           | 33.9           | 7.3        | 3.0        | 2.4               | 40.4         | 2.6        | 33.5         | 12.1                     | 51.0         | 54.9                 | 25.5                 | 8.7                  | 5.0                  | 56.7            |
| Syngenta                | NK0696-D           | 43<br>14            | 106        | 34,000           | 33.5           | 7.3        | 3.3        | 3.1               | 39.9         | 2.0        | 36.1         | 13.3                     | 50.6         | 59.1                 | 23.3                 | 8.2                  | 4.8                  | 58.1            |
| Brevant                 | B08B37SXE          | 31                  | 100        | 34,000           | 33.2           | 8.2        | 2.3        | 3.3               | 38.0         | 2.5        | 36.6         | 8.7                      | 64.4         | 55.1                 | 18.4                 | 6.2                  | 3.9                  | 62.5            |
| Seed Consultants        | SC1093AM           | 1                   | 100        | 34,000           | 32.8           | 7.6        | 2.7        | 2.4               | 41.7         | 2.4        | 32.2         | 10.6                     | 54.1         | 53.3                 | 26.8                 | 9.2                  | 5.2                  | 57.2            |
| Pine Creek Seed         | R6018DV            | 15                  | 110        | 34,000           | 32.8           | 7.2        | 3.0        | 2.7               | 42.4         | 2.6        | 32.7         | 11.9                     | 50.0         | 57.6                 | 26.3                 | 9.0                  | 5.2                  | 57.8            |
| Hubner                  | H0881D             | 43                  | 108        | 32,833           | 32.7           | 7.6        | 3.2        | 2.6               | 39.6         | 2.6        | 33.8         | 12.4                     | 49.8         | 52.5                 | 26.4                 | 9.0                  | 5.0                  | 55.1            |
| Dekalb                  | DKC59-81RIB        | 32                  | 109        | 34,000           | 32.4           | 8.2        | 3.3        | 2.8               | 38.8         | 2.6        | 34.0         | 12.7                     | 49.4         | 52.2                 | 25.5                 | 8.7                  | 4.8                  | 55.1            |
| Mid-Atlantic            | MA5083D            | 14                  | 108        | 34,000           | 32.0           | 7.6        | 3.2        | 2.9               | 40.0         | 2.6        | 33.9         | 12.7                     | 50.0         | 53.1                 | 24.3                 | 8.3                  | 4.6                  | 55.7            |
| Pioneer                 | P13476Q            | 28                  | 110        | 34,000           | 31.9           | 8.0        | 3.1        | 3.1               | 38.5         | 2.6        | 33.4         | 12.2                     | 51.2         | 54.0                 | 26.1                 | 8.9                  | 5.0                  | 56.7            |
| Syngenta                | NK1040-AA          | 10                  | 110        | 34,000           | 31.9           | 7.5        | 3.4        | 3.0               | 38.5         | 2.7        | 34.4         | 13.4                     | 49.0         | 51.9                 | 25.3                 | 8.6                  | 4.7                  | 54.6            |
| Growmark FS             | FS 6121X RIB       | 32                  | 111        | 34,000           | 31.5           | 8.0        | 3.5        | 2.8               | 36.2         | 2.6        | 36.5         | 14.0                     | 49.6         | 53.9                 | 28.0                 | 9.5                  | 5.3                  | 55.8            |
| Brevant                 | B06F18Q            | 28                  | 106        | 34,000           | 31.4           | 7.8        | 3.2        | 2.5               | 37.4         | 2.3        | 34.9         | 12.4                     | 50.5         | 55.3                 | 27.3                 | 9.3                  | 5.3                  | 56.8            |
| Seed Consultants        | SC1084AM           | 1                   | 108        | 34,000           | 31.3           | 7.4        | 3.0        | 2.8               | 41.2         | 2.6        | 34.2         | 11.8                     | 53.1         | 55.2                 | 25.2                 | 8.6                  | 4.9                  | 57.6            |
| Hubner                  | H6390RCSS          | 32                  | 108        | 34,000           | 31.3           | 7.7        | 3.0        | 2.5               | 38.9         | 2.5        | 33.8         | 12.3                     | 50.5         | 60.7                 | 24.5                 | 8.3                  | 5.0                  | 59.5            |
| Dekalb                  | DKC61-40RIB        | 32                  | 111        | 34,000           | 30.9           | 7.7        | 3.3        | 2.7               | 38.3         | 2.6        | 34.5         | 13.1                     | 49.4         | 55.9                 | 23.8                 | 8.1                  | 4.6                  | 56.6            |
| Growmark FS             | FS 5722V RIB       | 43                  | 107        | 34,000           | 30.7           | 7.7        | 3.1        | 3.2               | 36.8         | 2.5        | 34.6         | 11.9                     | 53.8         | 56.0                 | 22.4                 | 7.6                  | 4.4                  | 58.4            |
| Dekalb                  | DKC108-64RIB       | 33                  | 108        | 32,333           | 30.7           | 7.6        | 3.4        | 2.7               | 37.0         | 2.6        | 35.8         | 13.6                     | 48.5         | 52.6                 | 22.4                 | 7.6                  | 4.1                  | 54.6            |
| Chemgro                 | 7045G2Z            | 10                  | 110        | 34,000           | 30.5           | 7.4        | 3.4        | 2.6               | 36.3         | 2.3        | 37.6         | 14.2                     | 50.0         | 55.0                 | 24.8                 | 8.5                  | 4.8                  | 56.2            |
| Revere Seed             | 0918 VT2PRIB       | 43                  | 109        | 34,000           | 30.0           | 7.9        | 3.6        | 3.1               | 35.6         | 2.4        | 37.2         | 14.4                     | 48.7         | 56.1                 | 23.5                 | 8.0                  | 4.5                  | 56.4            |
| Dekalb                  | DKC61-80RIB        | 32                  | 111        | 34,000           | 29.8           | 7.9        | 3.7        | 2.7               | 34.6         | 2.3        | 38.2         | 15.0                     | 47.8         | 56.5                 | 25.5                 | 8.7                  | 4.8                  | 55.8            |
| Pioneer<br>Mid Atlantia | P0817Q             | 28                  | 108        | 34,000           | 29.2           | 7.9        | 3.4        | 2.9               | 34.4         | 2.3        | 37.1         | 14.0                     | 49.7         | 57.8                 | 26.1                 | 8.9                  | 5.1                  | 57.5            |
| Mid-Atlantic<br>Provent | MA5103D<br>B09F18Q | 14<br>28            | 110<br>109 | 34,000<br>34,000 | 29.1<br>27.1   | 7.3<br>8.3 | 3.4<br>3.6 | 3.0<br>3.4        | 34.1<br>30.0 | 2.1<br>2.1 | 37.7<br>40.3 | 14.0<br>15.1             | 49.6<br>51.3 | 60.3<br>59.0         | 22.7<br>22.0         | 7.7<br>7.4           | 4.5<br>4.4           | 58.4<br>58.5    |
| Brevant                 | DUALTON            | 28                  |            | day means        | 31.3           | 8.3<br>7.7 | 3.0        | 3.4<br>2.8        | 30.0         | 2.1        | 40.3<br>35.3 | 15.1                     | 51.3<br>51.0 | 59.0<br>55.6         | 22.0                 | 7.4<br>8.4           | 4.4<br>4.8           | 58.5<br>57.0    |
|                         |                    |                     | 100-111    | auy means        | 51.3           | 1.1        | 5.2        | 2.0               | 57.8         | 2.3        | 55.5         | 12.9                     | 51.0         | 33.0                 | 24.7                 | 0.4                  | 4.0                  | 57.0            |
|                         |                    |                     |            | verall Mean      | 32.4           | 7.7        | 3.2        | 2.8               | 38.7         | 2.5        | 34.9         | 12.8                     | 50.8         | 55.0                 | 24.3                 | 8.3                  | 4.7                  | 56.7            |
|                         |                    |                     | 0          | LSD(0.1)         | 32.4           | 0.4        | 0.5        | 0.5               | 5.7          | 0.3        | 54.9<br>NS   | 12.8<br>NS               | 1.9          | 55.0                 | 3.3                  | 8.3<br>1.1           | 4.7                  | 2.8             |
|                         |                    |                     |            | CV%              | 6.9            | 3.5        | 10.7       | 12.6              | 10.7         | 9.1        | 9.6          | 12.0                     | 2.7          | 7.2                  | 10.0                 | 10.2                 | 10.4                 | 3.6             |
|                         |                    |                     |            | CV /0            | 0.5            | 5.5        | 10.7       | 12.0              | 10.7         | J.1        | 5.0          | 12.0                     | £./          | 7.2                  | <u> </u>             | 10.2                 | 10.7                 | 5.0             |



College of Agricultural Sciences

#### Notes: SEE BACKGROUND TAB

Cooperator: Penn England Farms

|       |        |                     |          |           |                |         |        | NIRS <sup>3</sup> |        |     |       | FDMS <sup>4</sup> |      | WC⁵                  |                      |                      |                      |                 |
|-------|--------|---------------------|----------|-----------|----------------|---------|--------|-------------------|--------|-----|-------|-------------------|------|----------------------|----------------------|----------------------|----------------------|-----------------|
|       |        |                     |          |           |                | Crude   |        |                   |        |     |       | uNDF              | NDFD |                      | Fresh                | ОМ                   | DOM                  |                 |
|       |        |                     | Relative | Pop.      | Dry Matter     | Protein | Lignin | Ash               | Starch | TFA | NDFom | 240 hr            | 30   | IVSD                 | Yield                | Yield                | Yield                | OMD             |
| Brand | Hybrid | Traits <sup>1</sup> | Maturity | Plants/ac | % <sup>2</sup> | %DM     | %DM    | %DM               | %DM    | %DM | %DM   | %DM               | %NDF | %Starch <sup>6</sup> | tons/ac <sup>7</sup> | tons/ac <sup>8</sup> | tons/ac <sup>9</sup> | % <sup>10</sup> |

Traits: See tab "Trait Key" for individual trait designation.

Dry Matter: Tables are sorted by dry matter. Avoid making comparisons with hybrids that differ significantly in dry matter.

NIRS: Near Infrared Spectroscopy

<sup>4</sup> FDMS: In 2022 Cumberland Valley Analytical Services introduced a new in vitro fiber digestibility system, called Feed Degradation Modeling System (FDMS), to predict NDFD for all major forage classes, including fresh corn silage. We determined the relationship between FDMS NDFD30 and wet chemistry NDFD30 was strong enough to use FDMS NDFD30, and avoid the extra charge for wet chemistry NDFD30. Hence, FDMS NDFD30 will be used to calculate OMD

WC: Wet Chemistry

<sup>5</sup> IVSD: Starch digestibiliy (% of starch) is analyzed by an in vitro wet chemistry method on samples ground through a 1-mm screen and incubated for 4 hours (IVSD).

Fresh Yield: Silage yields are expressed on a 35 percent DM basis; all other parameters are expressed on a dry matter basis.

<sup>3</sup>OM Yield: Silage yield (tons/ac) expressed on an organic matter (OM) basis.

DOM Yield: Yield of digestible organic matter.

<sup>10</sup> OMD: Organic Matter Digestibility - Please see "OMD Story" tab for information on how to use this column

NS = Not Significant

Prepared by: Alex Hristov (PSU Animal Sciences), Sergio Francisco (PSU Animal Sciences), Chris Canale (Cargill), Hanna Wells(PSU Plant Science), Dayton Spackman (PSU Plant Science), Charlie White (PSU Plant Science)

## Handy BT Trait Table - https://www.texasinsects.org/uploads/4/9/3/0/49304017/bttraittable\_feb\_2023.pdf

|    |                                                                 |                 |                                                                                 |     |     |     |     | · ·/ | - , -, | -,   |     | ,   |   | Resistanc                         |                          |                      |                |
|----|-----------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|-----|-----|-----|-----|------|--------|------|-----|-----|---|-----------------------------------|--------------------------|----------------------|----------------|
|    | Trait packages,<br>listed A-Z<br>= former name if<br>applicable | Bag-Tag<br>code | Toxins in package****<br>Font type denotes<br>target Caterpillar or<br>rootworm | BCW | CEW | ECB | FAW | SB   | SCB    | SWCB | TAW | WBC |   | e cases<br>for all Bts<br>in      | refuge,                  |                      | oicide<br>ance |
| 0  | Conventional                                                    |                 |                                                                                 |     |     |     |     |      |        |      |     |     |   |                                   |                          |                      |                |
| 1  | AcreMax                                                         | AM              | Cry1Ab - Cry1F                                                                  | x   | x   | x   | x   | x    | x      | x    |     |     |   | CEW<br>FAW<br>WBC                 | 5% in bag                | GLY                  | LL             |
| 2  | AcreMax CRW                                                     | AMRW            | Cry34Ab1 - Cry35Ab1                                                             |     |     |     |     |      |        |      |     |     | x | NCR<br>WCR                        | 10% in<br>bag            | GLY                  | LL             |
| 3  | AcreMax1                                                        | AM1             | Cry1F - Cry34Ab1 -<br>Cry35Ab1                                                  | x   |     | ×   | x   | x    | x      | x    |     |     | x | ECB<br>FAW NCR<br>SWCB<br>WBC WCR | 10% in<br>bag 20%<br>ECB | GLY                  | LL             |
| 4  | AcreMax Leptra                                                  | AML             | Cry1Ab - Cry1F - Vip3A                                                          | x   | x   | x   | x   | x    | x      | х    | x   | x   |   |                                   | 5% in bag                | GLY                  | LL             |
| 5  | AcreMax TRIsect                                                 | AMT             | Cry1Ab - Cry1F -<br>mCry3A                                                      | x   | x   | x   | x   | x    | x      | x    |     |     | x |                                   | 10% in<br>bag            | GLY                  | LL             |
| 6  | AcreMax Xtra                                                    | AMX             | Cry1Ab - Cry1F -<br>Cry34Ab1 - Cry35Ab1                                         | ×   | x   | x   | х   | x    | x      | х    |     |     | х | CEW<br>FAW NCR<br>WBC WCR         | 10% in<br>bag            | GLY                  | LL             |
| 7  | AcreMax Xtreme                                                  | ΑΜΧΤ            | Cry1Ab - Cry1F -<br>Cry34Ab1 - Cry35Ab1 -<br>mCry3A                             | x   | x   | x   | x   | x    | x      | x    |     |     | x | CEW<br>FAW<br>WBC<br>WCR          | 5% in bag                |                      |                |
| 8  | Agrisure 3010                                                   | 3010            | Cry1Ab                                                                          |     | х   | х   |     |      | х      | х    |     |     |   | CEW                               | 20%                      | GLY                  | LL             |
| 9  | Agrisure 3000<br>GT & 3011A                                     | 3000GT<br>3011A | Cry1Ab - <i>mCry3A</i>                                                          |     | x   | x   |     |      | x      | х    |     |     | х | CEW<br>WCR                        | 20%                      | GLY                  | LL             |
| 10 | Agrisure Above =<br>Agrisure 3120EZ                             | AA              | Cry1Ab - Cry1F                                                                  | x   | x   | x   | x   | x    | x      | x    |     |     |   | CEW<br>FAW<br>WBC                 | 5% in bag                | GLY<br>LL - c<br>bag | check          |
| 11 | Agrisure Total =<br>Agrisure 3122EZ                             | AT              | Cry1Ab - Cry1F -<br>Cry34Ab1 - Cry35Ab1 -<br>mCry3A                             | x   | x   | x   | x   | x    | x      | x    |     |     | × | CEW<br>FAW<br>WBC<br>WCR          | 5% in bag                | GLY<br>LL - c<br>bag | check          |
| 12 | Agrisure Viptera<br>3110                                        | 3110            | Cry1Ab - Vip3A                                                                  | x   | x   | x   | х   | x    | x      | х    | х   | x   |   |                                   | 20%                      | GLY                  | LL             |
| 13 | Agrisure Viptera<br>3111                                        | 3111            | Cry1Ab - Vip3A -<br><i>mCry3A</i>                                               | x   | x   | x   | х   | x    | x      | x    | x   | x   | х | WCR                               | 20%                      | GLY                  | LL             |
| 14 | Duracade =<br>AgrisureDuracad<br>e 5122EZ                       | D               | Cry1Ab - Cry1F -<br>eCry3.1Ab - mCry3A                                          | x   | x   | x   | x   | x    | x      | x    |     |     | x | CEW<br>FAW<br>WBC<br>WCR          | 5% in bag                | GLY<br>LL - c<br>bag | check          |
| 15 | Duracade<br>Viptera =<br>AgrisureDuracad<br>e 5222EZ            | DV              | Cry1Ab - Cry1F - Vip3A -<br>eCry3.1Ab - mCry3A                                  | x   | x   | x   | x   | x    | x      | x    | x   | x   | x | WCR                               | 5% in bag                | GLY<br>LL - c<br>bag | check          |
| 16 | Duracade<br>Viptera Z3 =<br>AgrisureDuracad<br>e 5332EZ         | DVZ             | Cry1Ab - Cry1A.105 -<br>Cry2Ab2 - Vip3A <i>-</i><br>eCry3.1Ab - mCry3A          | x   | x   | x   | x   | x    | x      | x    | x   | x   | x | WCR                               | 5% in bag                | GLY<br>LL - c<br>bag | check          |
| 17 | Herculex I                                                      | нхі             | Cry1F                                                                           | x   |     | x   | x   | x    | x      | x    |     |     |   | ECB FAW<br>SWCB<br>WBC            | 20%                      | GLY                  | LL             |

| 18 | Herculex RW                                | HXRW        | Cry34Ab1 - Cry35Ab1                                                                        |   |   |   |   |   |   |   |   |   | x | NCR<br>WCR                        | 20%       | GLY                  | LL |
|----|--------------------------------------------|-------------|--------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|-----------------------------------|-----------|----------------------|----|
| 19 | Herculex XTRA                              | нхх         | Cry1F - Cry34Ab1 -<br>Cry35Ab1                                                             | x |   | x | x | x | x | х |   |   | x | ECB FAW<br>NCR<br>SWCB<br>WBC WCR | 20%       | GLY                  | LL |
| 20 | Intrasect                                  | YHR         | Cry1Ab - Cry1F                                                                             | x | x | x | x | x | x | x |   |   |   | CEW<br>FAW<br>WBC                 | 5%        | GLY                  | LL |
| 21 | Intrasect TRIsect                          | CYHR        | Cry1Ab - Cry1F -<br><i>mCry3A</i>                                                          | x | x | x | x | x | x | x |   |   | x | CEW<br>FAW<br>WBC<br>WCR          | 20%       | GLY                  | LL |
| 22 | Intrasect Xtra                             | YXR         | Cry1Ab - Cry1F -<br>Cry34Ab1 - Cry35Ab1                                                    | х | x | x | х | x | x | x |   |   | х | CEW<br>FAW NCR<br>WBC WCR         | 20%       | GLY                  | LL |
| 23 | Intrasect Xtreme                           | CYXR        | Cry1Ab - Cry1F -<br>Cry34Ab1 - Cry35Ab1 -<br>mCry3A                                        | x | × | x | x | x | x | x |   |   | x | CEW<br>FAW<br>WBC<br>WCR          | 5%        | GLY                  | LL |
| 24 | Leptra                                     | VYHR        | Cry1Ab - Cry1F - Vip3A                                                                     | x | x | x | x | x | x | х | x | x |   |                                   | 5%        | GLY                  | LL |
| 25 | Powercore                                  | PW          | Cry1A.105 - Cry2Ab2 -<br>Cry1F                                                             | х | x | x | x | x | x | x |   |   |   | CEW<br>WBC                        | 5%        | GLY                  | LL |
| 26 | Powercore<br>Refuge Advanced               | PWRA        | Cry1A.105 - Cry2Ab2 -<br>Cry1F                                                             | x | x | x | x | x | x | x |   |   |   | CEW<br>WBC                        | 5% in bag | GLY                  | LL |
| 27 | Powercore Enlist<br>Refuge Advanced        | PWE         | Cry1A.105 - Cry2Ab2 -<br>Cry1F                                                             | x | x | x | x | x | x | x |   |   |   | CEW<br>WBC                        | 5% in bag | GLY<br>2,4-D<br>fops |    |
| 28 | QROME                                      | Q           | Cry1Ab - Cry1F -<br>Cry34Ab1 - Cry35Ab1 -<br>mCry3A                                        | x | x | x | x | x | x | x |   |   | x | CEW<br>FAW<br>WBC<br>WCR          | 5% in bag |                      | LL |
| 29 | SmartStax                                  | SS, SX      | Cry1A.105 - Cry2Ab2 -<br>Cry1F - <i>Cry3Bb1 -</i><br>Cry34Ab1 - Cry35Ab1                   | x | x | x | x | x | x | x |   |   | x | CEW NCR<br>WBC<br>WCR             | 5%        | GLY                  | LL |
| 30 | SmartStax<br>Refuge Advanced               | SXRA        | Cry1A.105 - Cry2Ab2 -<br>Cry1F - <i>Cry3Bb1 -</i><br>Cry34Ab1 - Cry35Ab1                   | x | x | x | x | x | x | x |   |   | x | CEW NCR<br>WBC<br>WCR             | 5% in bag | GLY                  | LL |
| 31 | SmartStax Enlist                           | SSE         | Cry1A.105 - Cry2Ab2 -<br>Cry1F - <i>Cry3Bb1 -</i><br><i>Cry34Ab1 - Cry35Ab1</i>            | x | x | x | x | × | x | x |   |   | x | CEW NCR<br>WBC<br>WCR             | 5% in bag | GLY<br>2,4-D<br>fops | )  |
| 32 | SmartStax RIB<br>Complete                  | SS<br>SSRIB | Cry1A.105 - Cry2Ab2 -<br>Cry1F - <i>Cry3Bb1 -</i><br><i>Cry34Ab1 - Cry35Ab1</i>            | x | × | x | × | × | x | x |   |   | × | CEW NCR<br>WBC<br>WCR             | 5% in bag | GLY                  | LL |
| 33 | SmartStax PRO<br>Refuge Advanced           | SSPro       | Cry1A.105 - Cry2Ab2 -<br>Cry1F- Cry3Bb1 -<br>Cry34Ab1 -Cry35Ab1 -<br>dvSnf7                | x | x | x | x | x | x | x |   |   | x | CEW<br>WBC                        | 5% in bag | GLY                  | LL |
| 34 | SmartStax PRO<br>Enlist Refuge<br>Advanced |             | Cry1A.105 - Cry2Ab2 -<br>Cry1F- <i>Cry3Bb1 -</i><br><i>Cry34Ab1 - Cry35Ab1 -</i><br>dvSnf7 | x | x | x | x | x | x | х |   |   | x | CEW<br>WBC                        | 5% in bag | GLY<br>2,4-D<br>fops | )  |

| 35 | SmartStax PRO<br>with RNAi<br>Technology  | SSPRORIB         | Cry1A.105 - Cry2Ab2 -<br>Cry1F- Cry3Bb1 -<br>Cry34Ab1 - Cry35Ab1 -<br>dvSnf7 | x | x | x | x | × | x | x |   |   | x | CEW<br>WBC                 | 5% in bag     | GLY LL                   |
|----|-------------------------------------------|------------------|------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|----------------------------|---------------|--------------------------|
| 36 | Trecepta                                  | TRE,TRC          | Cry1A.105 - Cry2Ab2 -<br>Vip3A                                               | x | x | x | х | x | x | х | x | x |   |                            | 5%            | GLY                      |
| 37 | Trecepta RIB<br>Complete                  | TRERIB<br>TRCRIB | Cry1A.105 - Cry2Ab2 -<br>Vip3A                                               | х | x | x | х | x | x | х | x | х |   |                            | 5% in bag     | GLY                      |
| 38 | TRIsect                                   | CHR              | Cry1F - <i>mCry3A</i>                                                        | x |   | x | x | x | x | х |   |   | x | ECB FAW<br>SWCB<br>WBC WCR | 20%           | GLY LL                   |
| 39 | Viptera =<br>AgrisureViptera<br>3220EZ    | v                | Cry1Ab - Cry1F - Vip3A                                                       | x | x | x | x | x | x | x | x | x |   |                            | 5% in bag     | GLY<br>LL - check<br>bag |
| 40 | Viptera Z3 =<br>AgrisureViptera<br>3330EZ | VZ               | Cry1Ab - Cry1A.105 -<br>Cry2Ab2 - Vip3A                                      | x | x | x | x | x | x | x | x | x |   |                            | 5% in bag     | GLY<br>LL - check<br>bag |
| 41 | Vorceed Enlist                            | v                | Cry1A.105 - Cry2Ab2 -<br>Cry1F- Cry3Bb1 -<br>Cry34Ab1 - Cry35Ab1 -<br>dvSnf7 | x | x | x | x | x | x | x |   |   | x | CEW NCR<br>WBC             | 5% in bag     | GLY LL<br>2,4-D<br>fops  |
| 42 | VT Double PRO                             | VT2P<br>VT2PRO   | Cry1A.105 - Cry2Ab2                                                          |   | x | x | х | x | x | х |   |   |   | CEW                        | 5%            | GLY                      |
| 43 | VT2P RIB<br>Complete                      | VT2PRIB          | Cry1A.105 - Cry2Ab2                                                          |   | x | x | х | x | x | х |   |   |   | CEW                        | 5% in bag     | GLY                      |
| 44 | VT TriplePRO                              | VT3P             | Cry1A.105 - Cry2Ab2 -<br><i>Cry3Bb1</i>                                      |   | x | x | х | x | x | х |   |   | x | CEW NCR<br>WCR             | 20%           | GLY                      |
| 45 | VT3P RIB<br>Complete                      | VT3PRIB          | Cry1A.105 - Cry2Ab2 -<br><i>Cry3Bb1</i>                                      |   | x | x | x | x | x | x |   |   | x | CEW NCR<br>WCR             | 10% in<br>bag | GLY                      |
| 46 | VT4Pro w/RNAi<br>Tech.                    | VT4PRO           | Cry1A.105 - Cry2Ab2 -<br>Vip3A <i>- Cry3Bb1 -</i><br>dvSnf7                  | x | x | x | x | x | x | x | x | x | x |                            | 5% in bag     | GLY                      |
| 47 | YieldGard Corn<br>Borer                   | YGCB             | Cry1Ab                                                                       |   | x | x |   |   | x | х |   |   |   | CEW                        | 20%           | GLY                      |
| 48 | YieldGard<br>Rootworm                     | YGRW             | Cry3Bb1                                                                      |   |   |   |   |   |   |   |   |   | x | NCR WCR                    | 20%           | GLY                      |
| 49 | YieldGard VT<br>Triple                    | VT3              | Cry1Ab - <i>Cry3Bb1</i>                                                      |   | x | x |   |   | x | x |   |   | x | CEW NCR<br>WCR             | 20%           | GLY                      |

## The OMD Index

The digestibility of nutrients in corn silage is paramount when determining nutritional value. Starch and NDF are responsible for much of the digestible energy in corn silage. In order to give dairy producers and nutritionist a tool to evaluate corn silage hybrids, we developed a new digestibility index, called the Organic Matter Digestibility Index (OMDI or just OMD), and is based on digestibility of protein, fat, NDF, and starch. The sum of which makes up approximately 86-88% of the organic matter in corn silage.

The OMD index represents the digestible portion of silage organic matter and is based on chemical analyses only. It does not predict dry matter intake or milk production, although numerous studies clearly show that digestibility of forage organic matter is directly related to lactation performance of dairy cows. The OMD index does not represent the absolute digestibility of silage organic matter, as this can be reliably determined only in experiments with live animals. But, OMD is representative of the potentially digestible organic matter of the whole plant and can be used to compare silage hybrids. Furthermore, simulation analyses using the Cornell Net Carbohydrate and Protein System (CNCPS v. 6.55; Cornell University, Ithaca, NY) show that OMD correlates reasonably well with model-predicted milk production of dairy cows fed a standard diet containing approx. 40% corn silage (dry matter basis).

#### How is the OMD Index Used?

Feeding value of corn silage is mostly associated with digestibility of NDF or starch. A long-standing goal of PDMP is to create a single measure of silage nutritive value using several variables associated with digestibility. Traditional variables, crude protein (accounted for fiber-bound nitrogen), NDF, starch, lignin, and fat, are combined with digestibility determinations for NDF (FDMS NDFD30\*) and starch (IVSD; 4-hour, 1-mm grind). Once combined, these digestibility coefficients sum to predict OMD.

\* FDMS: In 2022 Cumberland Valley Analytical Services introduced a new in vitro fiber digestibility system, called Feed Degradation Modeling System (FDMS), to predict NDFD for all major forage classes, including fresh corn silage. We determined the relationship between FDMS NDFD30 and wet chemistry NDFD30 was strong enough to use FDMS NDFD30, and avoid the extra charge for wet chemistry NDFD30. Hence, FDMS NDFD30 will be used to calculate OMD. Hence, FDMS NDFD30 = 100

The OMD Index is calculated using the following equation: OMDI (%) = {[(crude protein – NDFCP) × 0.89] + (total fatty acids × 0.75) + (starch × IVSD ÷ 100) + [(FDMS NDFom - lignin) × FDMS NDFD30 ÷ 100)]} ÷ [(crude protein – NDFCP) + total fatty acids + starch + (aNDFom – lignin)] × 100.

Where: OMDI (%) is Organic Matter Digestibility Index; crude protein, total fatty acids, starch, NDFCP (NDF-bound crude protein), aNDFom (ash-free basis, amylase-treated NDF), and lignin (ash-free) are expressed as % of corn silage dry matter; 0.89 is assumed (based on literature data) coefficient of digestibility of silage crude protein; 0.75 is assumed (based on literature data) coefficient of digestibility of silage total fatty acids; IVSD is starch digestibility (by wet chemistry at 4-hour and sample ground through a 1-mm sieve) expressed as % of starch; and FDMS NDFD30.

**Use of OMDI:** The OMD index is intended to represent the digestible portion of silage dry matter and is based on chemical analyses. OMD does not represent the absolute digestibility of silage organic matter, but it is representative of the potentially digestible organic matter and can be used when comparing silage hybrids. *Simply put, the higher the OMD value, the higher the overall expected digestibility of the silage.* OMD reflects the digestibility of key nutrients within the entire plant. Producers without carryover of silage should consider the interaction of OMD and DOM (digestible organic matter yield per acre) as yield of digestible organic matter will be equally as relevant as OMD.

#### Conclusion

Organic matter digestibility is not a new measure. For years, researchers and nutritionists have used digestibility estimates to formulate rations for dairy cattle. Today, integrating these data is a useful practice to gauge silage value and match hybrid to farm needs. Put simply, OMD measures whole plant digestibility. Emphasis is on digestibility of all main nutrients. In the end, we hope OMD serves to facilitate discussion among producer, seed consultant, and dairy nutritionist as to which hybrids offer the best nutrient value for dairy cows.