

Tool Name

Extension Team: Plant Science Tool Version:

Author: Dayton Spackman Last Updated:

Contact Email: <u>djs5487@gmail.com</u>

Website:

Description:

This report provides independent and unbiased information for the evaluation of commercial corn grain and silage hybrids available in Pennsylvania. The corn hybrid evaluation program provides farmers, seed corn companies and university personnel with information on the relative performance of corn hybrids gorwn under Pennsylvania conditions. It should be used to supplement other sources of information, such as seed industry performance tests, other independent testing data, and on-farm performance records, when making hybrid selection decisions.

User Instructions:

The "Background" tab provides information specific to each trial location. This information is useful to evaluate selected hybrids on your farm under your growing conditions and practices. The "Table" tab contains all the data needed to make a final determination of the proper hybrids for your operation. The first factor to consider when using this report is hybrid maturity. Moisture or dry matter is a good indicator of hybrid maturity. Hybrids with lower moisture or high dry matter are generally adapted to shorter season environments. Identify hybrids in the list that you know are adapted to your area. Then, select hybrids based on the qualities you are looking for on your operation. For grain, high yielding hybrids should be selected based on moisture and maturity. Silage has many quality factors that will vary from farm to farm. Dry matter is a good place to start when selecting a silage hybrid, but working with a nutritionist will help determine what forage qualities will be best for your operation. We do not recommend using data from a single site, even if it is close to your farm, to make hybrid selection choices. It is best to use data averaged over multiple locations. The last tab "Trait Key" contains all the commercial designation of individual traits. The "Table" tab will provide the company specific nomenclature, but the "Trait Key" will give a more in depth explanation of these traits.

References:

This report is prepared by: Alex Hristov (PSU Animal Sciences), Chris Canale (Cargill), Dayton Spackman (PSU Plant Science), and James Breining (PSU Plant Science).

Acknowledgement of Risk:

This tool is provided for general informational purposes only and The Pennsylvania State University shall have no liability whatsoever for the use of or reliance on this tool.

Penn State/PDMP Corn Silage Hybrid Performance Trial Results

Prepared by Alex Hristov (PSU Animal Sciences), Chris Canale (Cargill), Hanna Wells (PSU Plant Science), Dayton Spackman(PSU Plant Science), and James Breining (PSU Plant Science).

Produced in cooperation with the Professional Dairy Managers of Pennsylvania (PDMP).

Visit Penn State's College of Agricultural Sciences on the Web: www.cas.psu.edu

Penn State College of Agricultural Sciences research, extension, and resident education programs are funded in part by Pennsylvania counties, the Commonwealth of Pennsylvania, and the U.S. Department of Agriculture.

This publication is available in alternative media on request. The Pennsylvania State University is committed to the policy that all persons shall have equal access to programs, facilities, admission, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by University policy or by state or federal authorities. It is the policy of the University to maintain an academic and work environment free of discrimination, including harassment. The Pennsylvania State University prohibits discrimination and harassment against any person because of age, ancestry, color, disability or handicap, national origin, race, religious creed, sex, sexual orientation, or veteran status. Discrimination or harassment against faculty, staff, or students will not be tolerated at The Pennsylvania State University. Direct all inquiries regarding the nondiscrimination policy to the Affi rmative Action Director, The Pennsylvania State University, 328 Boucke Building, University Park, PA 16802-5901, Tel 814-865-4700/V, 814-863-1150/TTY.

Where trade names appear, no discrimination is intended, and no endorsement by Penn State Cooperative Extension is implied

c The Pennsylvania State University 2015

Production Details: Penn State/PDMP Corn Silage Hybrid Evaluation Trials

Site:		Canton, PA						
Cooperator		South-Mont Farms, Lance Shedden						
Planting Date		June 14, 2022						
Soil Type		Linden soils						
Herbicides pre-		.7 qts/ac Acuron						
	post-	None						
Previous Crop		Corn silage						
Tillage		no-till						
Starter Fertilizer		15 gal - UAN						
Insecticide		Defcon 4.67g						
Manure		6000gal/ac in fall '21, 6000 gal/ac in June '22						
Fertilizer		150lbs/ac urea with n-ergize on 7/15						
Harvest Date		10/3/2022						

Field Summary:

Wet weather delayed planting this site. Emergence and stands were good. Dry and hot weather in July and August stressed the plant height, however timely rain events during the grain fill period gave us good test data. Insect and disease pressure was very minimal this year. Only 2 replications of data was used from this location. Replication 3 was discarded due to field variability.

Weather Summar	y:	
Month	Precip. In.	GDD
June 14th - June 30th	0.50	264
July 1st- August 1st	2.80	606
August 1st - Sept 1st	3.90	594
Sept 1st - Oct 3rd	6.90	298
Season Total	14.10	1762
Precip. Data:	https://climate.co	om

http://climatesmartfarming.org/tools/csf-growing-degree-day-calculator/ GDD data:

Penn State/PDMP Corn Silage Hybrid Testing Program 2022 Early maturity (85-100) day RM silage hybrids in Canton, PA

PennState Extension & Post Pennsylvania College of Agricultural Sciences

PROFESSIONAL DAIRY MANAGERS OF PENNSYLVANIA

Notes: SEE BACKGROUND TAB
Cooperator: South Mont Farms

								NIRS ³				FDMS ⁴		WC⁵				
					Dry	Crude						uNDF	NDFD		Fresh	ОМ	DOM	
			Relative	Pop.	Matter	Protein	Lignin	Ash	Starch	TFA	NDFom	240 hr	30	IVSD	Yield	Yield	Yield	OMD
Brand	Hybrid	Traits ¹	Maturity	Plants/ac	% ²	%DM	%DM	%DM	%DM	%DM	%DM	%DM	%NDF	%Starch ⁶	tons/ac ⁷	tons/ac ⁸	tons/ac ⁹	% ¹⁰
Revere Seed	9108 VT2PRIB	32	91	31,000	37.0	7.7	2.2	2.1	47.8	2.8	27.8	8.2	54.1	52.0	19.1	6.6	3.7	56.5
Revere Seed	8607 5222EZ	11	86	34,000	34.7	9.4	2.3	2.2	41.3	2.7	29.6	8.7	55.8	54.0	17.0	5.8	3.4	59.0
Seed Consultants	SC973AM	22	97	31,750	34.6	8.2	2.2	2.4	44.4	2.8	28.4	8.3	56.0	51.6	20.5	7.0	4.0	57.2
Hubner	H6134RCSS	35	96	34,000	33.6	8.4	2.1	2.5	44.0	2.7	28.1	8.1	55.6	49.9	21.4	7.3	4.1	56.2
Brevant	B96B29Q	39	96	32,000	33.1	8.2	1.6	2.6	41.5	2.6	29.4	6.4	64.4	53.2	18.6	6.3	3.9	61.1
Seed Consultants	SC1003AM	22	100	34,000	33.1	7.6	2.3	2.2	42.0	2.5	30.9	8.6	57.0	58.2	20.6	7.0	4.3	61.0
Revere Seed	9796 3220EZ	8	97	33,765	33.0	8.8	2.4	2.5	41.5	2.9	28.5	8.9	54.8	51.8	17.8	6.1	3.5	57.3
Dekalb	DKC48-34RIB	35	98	34,000	32.0	8.5	2.2	2.5	39.7	2.5	30.3	8.3	58.2	56.0	18.4	6.3	3.8	60.6
Chemgro	5836RTC	34	98	34,000	31.5	8.1	2.6	2.3	38.2	2.4	33.9	10.2	55.9	55.9	20.1	6.9	4.1	59.5
Pioneer	P0031Q	39	100	32,750	31.4	7.9	2.5	2.5	39.1	2.5	31.1	9.7	54.5	50.7	19.2	6.6	3.7	56.3
Growmark FS	FS 4927T RIB	34	99	32,750	31.0	7.8	2.6	2.2	38.2	2.3	34.5	10.3	55.7	54.5	20.4	7.0	4.1	58.5
Revere Seed	9916 VT2PRIB	32	99	33,500	30.7	7.7	2.5	2.4	38.4	2.6	33.5	9.4	57.9	52.1	18.9	6.4	3.8	58.4
Brevant	B02V87AMXT	28	102	29,250	30.4	8.2	2.2	2.5	39.8	2.6	31.9	8.4	59.9	53.9	17.9	6.1	3.6	60.0
Chemgro	6029D4Z	11	100	34,000	30.3	8.5	2.5	2.6	39.0	2.5	32.0	9.8	54.8	55.4	19.3	6.6	3.9	59.1
Channel	201-07SSPRIB	36	101	34,000	30.2	8.6	2.2	2.3	39.4	2.6	30.3	8.4	59.3	54.1	19.9	6.8	4.1	60.1
Hubner	H6107RCSS	35	97	34,000	29.7	8.2	2.5	2.8	37.8	2.6	32.2	9.3	57.2	53.0	19.9	6.8	4.0	58.8
Brevant	B97T04SXE	37	97	34,000	29.7	8.0	2.9	2.4	35.3	2.7	37.6	12.1	55.4	54.3	18.9	6.4	3.8	58.4
Seed Consultants	SC1018AM	22	101	33,250	29.6	8.3	2.4	2.4	39.4	2.8	32.4	9.3	58.5	50.7	20.7	7.0	4.1	58.0
Brevant	B99B22Q	39	99	34,000	29.5	8.1	1.7	2.8	38.5	2.4	31.0	6.6	64.9	53.8	18.3	6.2	3.8	62.0
Dekalb	DKC50-87RIB	35	100	34,000	29.4	8.0	2.9	2.3	34.8	2.3	36.4	11.9	53.6	54.0	17.6	6.1	3.5	57.5
Revere Seed	9827 SSXRIB	35	98	34,000	29.2	8.9	2.2	2.7	35.7	2.5	32.2	8.8	60.4	53.8	17.0	5.8	3.5	60.8
Kings Agriseeds	RT 45T09	11	95	33,500	29.1	8.9	2.6	2.6	36.5	2.5	32.4	10.3	53.4	57.1	18.2	6.2	3.7	59.6
Dekalb	DKC53-94RIB	35	103	34,000	29.1	8.1	2.4	2.3	35.9	2.4	33.1	9.7	57.8	55.2	18.7	6.4	3.8	60.1
Revere Seed	0398 5222EZ	11	103	34,000	29.0	8.9	2.7	2.6	30.2	2.3	37.0	10.9	57.6	57.5	18.6	6.3	3.9	61.4
Revere Seed	9598 5222EZ	11	95	34,000	28.4	8.7	2.5	2.5	38.8	2.6	31.4	9.6	54.8	52.9	17.9	6.1	3.5	57.8
Pioneer	P9884Q	39	98	33,000	27.9	8.8	2.0	2.8	33.0	2.4	33.8	8.1	64.5	52.3	15.2	5.2	3.2	62.0
			Ov	erall Mean	31.0	8.3	2.4	2.5	38.9	2.6	31.9	9.2	57.4	53.8	18.9	6.4	3.8	59.1
				LSD(0.1)	2.4	0.6	0.4	0.3	4.2	0.2	2.9	1.5	2.7	3.0	2.4	0.8	0.5	1.9
				CV%	4.6	4.2	9.3	8.1	6.3	5.5	5.3	9.7	2.7	3.3	7.5	7.6	7.1	1.9

Traits: See tab " Trait Key" for individual trait designation.

² Dry Matter: Tables are sorted by dry matter. Avoid making comparisons with hybrids that differ significantly in dry matter.

³ NIRS: Near Infrared Spectroscopy

⁴ FDMS: In 2022 Cumberland Valley Analytical Services introduced a new in vitro fiber digestibility system, called Feed Degradation Modeling System (FDMS), to predict NDFD for all major forage classes, including fresh corn silage. We determined the relationship between FDMS NDFD30 and wet chemistry NDFD30 was strong enough to use FDMS NDFD30, and avoid the extra charge for wet chemistry NDFD30. Hence, FDMS NDFD30 will be used to calculate OMD

WC: Wet Chemistry

⁶ IVSD: Starch digestibiliy (% of starch) is analyzed by an in vitro wet chemistry method on samples ground through a 1-mm screen and incubated for 4 hours (IVSD).

Penn State/PDMP Corn Silage Hybrid Testing Program 2022 Early maturity (85-100) day RM silage hybrids in Canton, PA

Notes: SEE BACKGROUND TAB Cooperator: South Mont Farms

						NIRS ³		FDMS ⁴			WC⁵							
					Dry	Crude						uNDF	NDFD		Fresh	ОМ	DOM	
			Relative	Pop.	Matter	Protein	Lignin	Ash	Starch	TFA	NDFom	240 hr	30	IVSD	Yield	Yield	Yield	OMD
Brand	Hybrid	Traits ¹	Maturity	Plants/ac	% ²	%DM	%DM	%DM	%DM	%DM	%DM	%DM	%NDF	%Starch ⁶	tons/ac ⁷	tons/ac ⁸	tons/ac ⁹	% ¹⁰

Fresh Yield: Silage yields are expressed on a 35 percent DM basis; all other parameters are expressed on a dry matter basis.

NS = Not Significant

Prepared by: Alex Hristov (PSU Animal Sciences), Sergio Francisco (PSU Animal Sciences), Chris Canale (Cargill), Hanna Wells(PDMP), Dayton Spackman (PSU Plant Science), and James Breining (PSU Plant Science).

⁸ OM Yield: silage yield (tons/ac) expressed on an organic matter (OM) basis.

POOM Yield: Yield of digestible organic matter.

¹⁰ OMD: Organic Matter Digestibility - Please see "OMD Story" tab for information on how to use this column

				Resistance to a Bt protein in		
Table Key #				the trait package has	Herbicide	
rubic itey ii	Trait Family Product	Bt protein(s)	Marketed for control of:	developed in :	tolerant?	
Conv.	Conventional	None	None		No	
RR2	Roundup Ready 2	None	None		GT	
1	Agrisure GT	None	None		GT	
2	Agrisure 3010 & 3010A	Cry1Ab	ECB SWCB		GT LL	
3	Agrisure 3000 GT, 3011A	Cry1Ab, mCry3A	ECB SWCB RW	RW	GT LL	
		C	BCW CEW ECB FAW SB SWCB		CT II	
4	Agrisure Viptera 3110	Cry1Ab, Vip3A	TAW WBC		GT LL	
5	Agrisure Viptera 3111	Cry1Ab, mCry3A, Vip3A	BCW CEW ECB FAW SB SWCB	RW	GT LL	
3	Agrisure viptera 3111	CIYIAD, IIICIYSA, VIPSA	TAW WBC RW	KVV	GT LL	
6	Agrisure 3120 E-Z Refuge	Cry1Ab, Cry1F	BCW ECB FAW SB SWCB	FAW WBC		
7	Agrisure 3122 E-Z Refuge	Cry1Ab,Cry1F, mCry3A, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW WBC RW		
8	Agrisure Viptera 3220 E-Z Refuge	Cry1Ab, Cry1F, Vip3A	BCW CEW ECB FAW SB SWCB TAW WBC]	
9	Agrisure Viptera 3330 E-Z Refuge	CryAb, Vip3A, Cry1A.105+CryAb2	BCW CEW ECB FAW SB SWCB TAW WBC		FOR SPECIFIC	
10	Agrisure Duracade 5122 E-Z Refuge	Cry1Ab, Cry1F, mCry3A, eCry3.1Ab	BCW ECB FAW SB SWCB RW	FAW WBC RW	LETTER CODE	
11	Agrisure Duracade 5222 E-Z Refuge	Cry1Ab, Cry1F, Vip3A, mCry3A, eCry3.1Ab	BCW CEW ECB FAW SB SWCB TAW WBC RW	RW		
		Cry1A.105/Cry2Ab2, Cry1Ab, Vip3A,	BCW CEW ECB FAW SB SWCB		1	
12	Agrisure Duracade 5332 E-Z Refuge	mCry3A, eCry3.1Ab	TAW WBC RW	WCR		
13	Herculex 1 (HX1)	Cry1F	BCW ECB FAW SB SWCB	ECB FAW SWCB WBC		
14	Herculex RW (HXRW)	Cry34/35Ab1	RW	RW	LL	
15	Herculex XTRA (HXX)	Cry1F, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW SWCB WBC RW	RR2 (most)	
16	TRIsect (CHR)	Cry1F, mCry3A	BCW ECB FAW SB SWCB RW	ECB FAW SWCB WBC RW	LL RR2	
17	Intrasect (YHR)	Cry1F, Cry1Ab	BCW ECB FAW SB SWCB	FAW WBC	LL RR2	
18	Intrasect TRIsect (CYHR)	Cry1Ab, Cry1F, mCry3A	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
19	Intrasect Xtra (YXR)	Cry1F, Cry1Ab, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
_	,					
20	Intrasect Xtreme (CYXR)	Cry1F, Cry1Ab, mCry3A, Cry34/35Ab1	BCW ECB FAW SB SWCB RW BCW CEW ECB FAW SB SWCB	FAW WBC RW	LL RR2	
21	Leptra (VYHR)	Cry1F, Cry1Ab, Vip3A	TAW WBC		LL RR2	
22	AcreMax (AM)	Cry1F, Cry1Ab	BCW ECB FAW SB SWCB	FAW WBC	LL RR2	
	AcreMax CRW (AMRW)	Cry34/35Ab1	RW	RW	LL RR2	
24	AcreMax1 (AM1)	Cry1F, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW SWCB WBC RW	LL RR2	
25	AcreMax Leptra (AML)	Cry1Ab, Cry1F, Vip3A	BCW ECB FAW SB SWCB TAW WBC <i>CEW</i>		LL RR2	
26	AcreMax TRIsect (AMT)	Cry1F, Cry1Ab, mCry3A	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
27	AcreMax Xtra (AMX)	Cry1F, Cry1Ab, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
28	AcreMax Xtreme (AMXT)	Cry1F, Cry1Ab, mCry3A, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
29	YieldGard CB (YGCB)	Cry1Ab	ECB SWCB		RR2	
	YieldGard VT Rootworm (YGRW)	Cry3Bb1	RW	RW	RR2	
31	YieldGard VT Triple	Cry1Ab, Cry3Bb1	ECB SWCB RW	RW	RR2	
32	VT Double PRO VT Double PRO RIB complete	Cry1A.105, Cry2Ab2	CEW ECB FAW SB SWCB	CEW	RR2	
33	VT Triple PRO VT Triple PRO RIB complete	Cry1A.105, Cry2Ab2, Cry3Bb1	CEW ECB FAW SB SWCB RW	CEW RW	RR2	
34	Trecepta (or RIB complete)	Cry1A.105, Cry2Ab2,Vip3A	BCW CEW ECB FAW SB SWCB TAW WBC		RR2	
25	Smartstax	Cry1A.105, Cry2Ab2, Cry1F, Cry3Bb1,	BCW CEW ECB FAW SB SWCB	CENALINADO DIAL	11 000	
35	Smartstax Refuge Advanced Smartstax RIB Complete	Cry34/35Ab1	RW	CEW WBC RW	LL RR2	
36	Smartstax Pro	Cry1A.105, Cry2Ab2, Cry1F, Cry3Bb1, Cry34/35Ab1, DvSnf7, dsRNA	BCW CEW ECB FAW SB SWCB RW	CEW WBC	LL RR2	
37	Smartstax Enlist	Cry1A.105, Cry2Ab2, Cry1F, Cry3Bb1, Cry34/35Ab1	BCW CEW ECB FAW SB SWCB RW	CEW WBC RW	LL RR2 E	
38	Powercore (or Refuge Advanced)	Cry1A.105, Cry2Ab2, Cry1F	BCW ECB FAW SB SWCB CEW	CEW WBC	LL RR2	
39	QROME (Q)	Cry1Ab, Cry1F, mCry3A, Cry34/35Ab1	BCW ECB FAW SB SWCB	FAW WBC RW	LL RR2	
	BCW = black cutworm	SB = stalk borer	GT = glyphosate tolerant			
	CEW = corn earworm	SWCB = southern corn borer	LL = Liberty Link, glufosinate tolera	nt		
	ECB = European corn borer	TAW = true armyworm	RR2 = Roundup Ready 2, glyphosate	e tolerant		
	FAW = fall armyworm	WBC = western bean cutworm				
	RW = corn rootworm					

https://www.texasinsects.org/bt-corn-trait-table.html

Source:

The OMD Index

The digestibility of nutrients in corn silage is paramount when determining nutritional value. Starch and NDF are responsible for much of the digestible energy in corn silage. In order to give dairy producers and nutritionist a tool to evaluate corn silage hybrids, we developed a new digestibility index, called the Organic Matter Digestibility Index (OMDI or just OMD), and is based on digestibility of protein, fat, NDF, and starch. The sum of which makes up approximately 86-88% of the organic matter in corn silage.

The OMD index represents the digestible portion of silage organic matter and is based on chemical analyses only. It does not predict dry matter intake or milk production, although numerous studies clearly show that digestibility of forage organic matter is directly related to lactation performance of dairy cows. The OMD index does not represent the absolute digestibility of silage organic matter, as this can be reliably determined only in experiments with live animals. But, OMD is representative of the potentially digestible organic matter of the whole plant and can be used to compare silage hybrids. Furthermore, simulation analyses using the Cornell Net Carbohydrate and Protein System (CNCPS v. 6.55; Cornell University, Ithaca, NY) show that OMD correlates reasonably well with model-predicted milk production of dairy cows fed a standard diet containing approx. 40% corn silage (dry matter basis).

How is the OMD Index Used?

Feeding value of corn silage is mostly associated with digestibility of NDF or starch. A long-standing goal of PDMP is to create a single measure of silage nutritive value using several variables associated with digestibility. Traditional variables, crude protein (accounted for fiber-bound nitrogen), NDF, starch, lignin, and fat, are combined with digestibility determinations for NDF (FDMS NDFD30*) and starch (IVSD; 4-hour, 1-mm grind). Once combined, these digestibility coefficients sum to predict OMD.

* FDMS: In 2022 Cumberland Valley Analytical Services introduced a new in vitro fiber digestibility system, called Feed Degradation Modeling System (FDMS), to predict NDFD for all major forage classes, including fresh corn silage. We determined the relationship between FDMS NDFD30 and wet chemistry NDFD30 was strong enough to use FDMS NDFD30, and avoid the extra charge for wet chemistry NDFD30. Hence, FDMS NDFD30 will be used to calculate OMD. Hence, FDMS NDFD30 = 100

The OMD Index is calculated using the following equation: OMDI (%) = {[(crude protein – NDFCP) × 0.89] + (total fatty acids × 0.75) + (starch × IVSD \div 100) + [(FDMS NDFom - lignin) × FDMS NDFD30 \div 100)]} \div [(crude protein – NDFCP) + total fatty acids + starch + (aNDFom – lignin)] × 100.

Where: OMDI (%) is Organic Matter Digestibility Index; crude protein, total fatty acids, starch, NDFCP (NDF-bound crude protein), aNDFom (ash-free basis, amylase-treated NDF), and lignin (ash-free) are expressed as % of corn silage dry matter; 0.89 is assumed (based on literature data) coefficient of digestibility of silage crude protein; 0.75 is assumed (based on literature data) coefficient of digestibility of silage total fatty acids; IVSD is starch digestibility (by wet chemistry at 4-hour and sample ground through a 1-mm sieve) expressed as % of starch; and FDMS NDFD30.

Use of OMDI: The OMD index is intended to represent the digestible portion of silage dry matter and is based on chemical analyses. OMD does not represent the absolute digestibility of silage organic matter, but it is representative of the potentially digestible organic matter and can be used when comparing silage hybrids. Simply put, the higher the OMD value, the higher the overall expected digestibility of the silage. OMD reflects the digestibility of key nutrients within the entire plant. Producers without carryover of silage should consider the interaction of OMD and DOM (digestible organic matter yield per acre) as yield of digestible organic matter will be equally as relevant as OMD.

Conclusion

Organic matter digestibility is not a new measure. For years, researchers and nutritionists have used digestibility estimates to formulate rations for dairy cattle. Today, integrating these data is a useful practice to gauge silage value and match hybrid to farm needs. Put simply, OMD measures whole plant digestibility. Emphasis is on digestibility of all main nutrients. In the end, we hope OMD serves to facilitate discussion among producer, seed consultant, and dairy nutritionist as to which hybrids offer the best nutrient value for dairy cows.