

Tool Name							
Extension Team:	Plant Science	Tool Version:					
Author:	Dayton Spackman	Last Updated:					
Contact Email:	djs5487@gmail.com						
Website:							
Description:							
evaluation program provid conditions. It should be us	des farmers, seed corn companies and ι	ne evaluation of commercial corn grain and silage hybrids available in Pennsylvania. The corn hybrid university personnel with information on the relative performance of corn hybrids gorwn under Pennsylvania ormation, such as seed industry performance tests, other independent testing data, and on-farm					
User Instructions:							
and practices. The "Table report is hybrid maturity. N environments. Identify hyb high yielding hybrids shou when selecting a silage hy a single site, even if it is c	e" tab contains all the data needed to ma Moisture or dry matter is a good indicato brids in the list that you know are adapte uld be selected based on moisture and n ybrid, but working with a nutritionist will I close to your farm, to make hybrid select	location. This information is useful to evaluate selected hybrids on your farm under your growing conditions ake a final determination of the proper hybrids for your operation. The first factor to consider when using this or of hybrid maturity. Hybrids with lower moisture or high dry matter are generally adapted to shorter season ed to your area. Then, select hybrids based on the qualities you are looking for on your operation. For grain, maturity. Silage has many quality factors that will vary from farm to farm. Dry matter is a good place to start help determine what forage qualities will be best for your operation. We do not recommend using data from tion choices. It is best to use data averaged over multiple locations. The last tab "Trait Key" contains all the rovide the company specific nomenclature, but the "Trait Key" will give a more in depth explanation of these					

References:

This report is prepared by: Alex Hristov (PSU Animal Sciences), Chris Canale (Cargill), Dayton Spackman (PSU Plant Science), and James Breining (PSU Plant Science).

Acknowledgement of Risk:

This tool is provided for general informational purposes only and The Pennsylvania State University shall have no liability whatsoever for the use of or reliance on this tool.

2022 Penn State/PDMP Corn Silage Hybrid Performance Trial Results

Prepared by Alex Hristov (PSU Animal Sciences), Chris Canale (Cargill), Hanna Wells (PSU Plant Science), Dayton Spackman(PSU Plant Science), and James Breining (PSU Plant Science).

Produced in cooperation with the Professional Dairy Managers of Pennsylvania (PDMP).

Visit Penn State's College of Agricultural Sciences on the Web: www.cas.psu.edu

Penn State College of Agricultural Sciences research, extension, and resident education programs are funded in part by Pennsylvania counties, the Commonwealth of Pennsylvania, and the U.S. Department of Agriculture.

This publication is available in alternative media on request. The Pennsylvania State University is committed to the policy that all persons shall have equal access to programs, facilities, admission, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by University policy or by state or federal authorities. It is the policy of the University to maintain an academic and work environment free of discrimination, including harassment. The Pennsylvania State University prohibits discrimination and harassment against any person because of age, ancestry, color, disability or handicap, national origin, race, religious creed, sex, sexual orientation, or veteran status. Discrimination or harassment against faculty, staff, or students will not be tolerated at The Pennsylvania State University. Direct all inquiries regarding the nondiscrimination policy to the Affi rmative Action Director, The Pennsylvania State University, 328 Boucke Building, University Park, PA 16802-5901, Tel 814-865-4700/V, 814-863-1150/TTY.

Where trade names appear, no discrimination is intended, and no endorsement by Penn State Cooperative Extension is implied

c The Pennsylvania State University 2015

Penn State/PDMP Corn Silage Hybrid Testing Program 2022

Combined Mid Season Hybrids in Late Season Location Report from

Juniata and Lancaster Counties Notes: SEE INDIVIDUAL LOCATION REPORT

PennState Extension & PD

College of Agricultural Sciences

Cooperators: Reinford Farms and Meadow Vista Dairy

						NIRS ³			FDMS ⁴			WC⁵						
					Dry	Crude						uNDF	NDFD		Fresh	ОМ	DOM	
			Relative	Pop.	Matter	Protein	Lignin	Ash	Starch	TFA	NDFom	240 hr	30	IVSD	Yield	Yield	Yield	OMD
Brand	Hybrid	Traits ¹	Maturity	Plants/ac	% ²	%DM	%DM	%DM	%DM	%DM	%DM	%DM	%NDF	%Starch ⁶	tons/ac ⁷	tons/ac ⁸	tons/ac ⁹	% ¹⁰
Pioneer	P0487Q	39	104	34,000	41.8	8.3	2.4	2.8	43.1	2.8	30.3	9.1	56.2	54.9	18.6	6.3	3.7	59.2
Kings Agriseeds	RT 57T85	5	107	34,000	40.1	7.5	2.4	2.6	43.3	2.6	31.4	9.1	56.4	53.8	18.2	6.2	3.6	58.3
Channel	206-16SSPRIB	36	106	34,000	40.1	8.3	2.7	3.0	41.3	2.6	31.0	9.4	54.6	51.9	17.3	5.9	3.4	56.9
Chemgro	6929RSX	35	109	34,000	39.6	7.8	2.7	2.8	40.7	2.6	33.8	10.3	54.5	55.4	17.0	5.8	3.4	58.5
Nutrien/Dyna-Gro	Dyna-Gro D48VC84	32	108	34,000	38.7	7.8	2.8	2.7	40.1	2.5	33.9	10.7	53.7	54.1	17.4	5.9	3.4	57.5
Pioneer	P0924Q	39	109	34,000	37.9	7.9	2.6	3.0	36.9	2.3	35.1	9.5	59.0	52.2	16.9	5.7	3.4	58.7
Seed Consultants	SC1071AM	22	107	34,000	37.7	8.2	2.3	2.9	44.1	2.7	30.2	8.8	56.2	53.9	17.8	6.0	3.5	58.5
Brevant	B10H24AM	22	110	34,000	37.5	8.4	2.5	3.2	40.6	2.7	32.9	9.4	57.4	55.5	17.8	6.0	3.6	59.8
Channel	206-99STXRIB	35	106	34,000	37.4	8.2	2.5	2.7	40.6	2.7	30.3	8.8	56.7	55.6	17.0	5.8	3.4	59.4
Brevant	B09F18Q	39	109	34,000	36.6	8.4	2.6	3.0	37.6	2.4	32.2	9.6	55.6	52.1	17.6	6.0	3.4	57.5
Chemgro	6835D4Z	11	108	34,000	34.7	7.7	2.7	3.0	37.5	2.3	34.0	10.4	55.3	55.2	17.8	6.0	3.5	58.5
			Ov	erall Mean	38.4	8.0	2.6	2.9	40.5	2.6	32.3	9.6	56.0	54.1	17.6	6.0	3.5	58.4
				LSD (0.1)	4.8	0.8	0.6	0.7	NS	0.6	NS	NS	4.7	NS	NS	NS	NS	NS
				CV	5.7	4.7	10.5	10.5	10.4	10.5	10.8	13.6	3.8	6.7	9.1	9.3	9.5	3.8

¹ Traits: See tab " Trait Key" for individual trait designation.

² Dry Matter: Tables are sorted by dry matter. Avoid making comparisons with hybrids that differ significantly in dry matter.

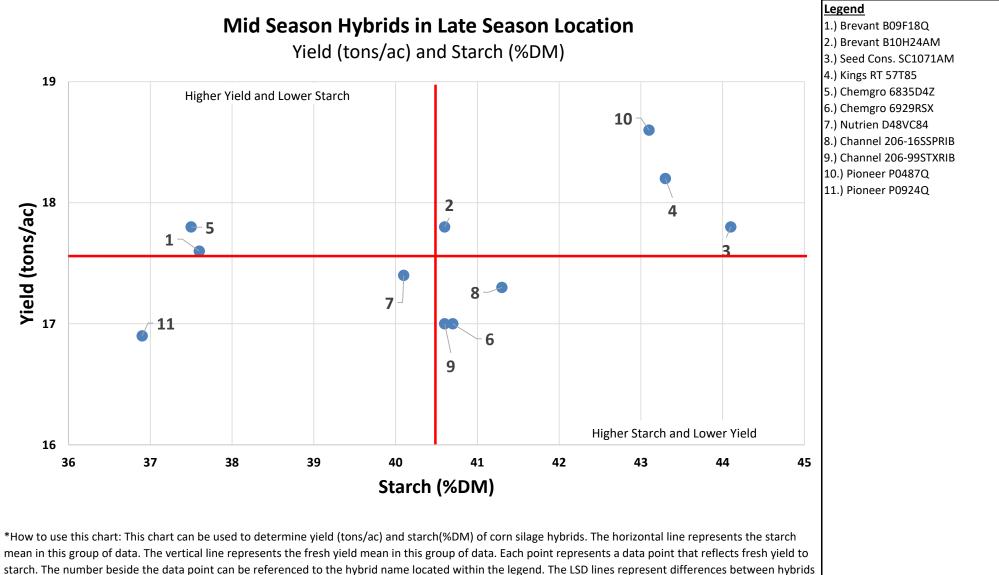
³NIRS: Near Infrared Spectroscopy

⁴ FDMS: In 2022 Cumberland Valley Analytical Services introduced a new in vitro fiber digestibility system, called Feed Degradation Modeling System (FDMS), to predict NDFD for all major forage classes, including fresh corn silage. We determined the relationship between FDMS NDFD30 and wet chemistry NDFD30 was strong enough to use FDMS NDFD30, and avoid the extra charge for wet chemistry NDFD30. Hence, FDMS NDFD30 will be used to calculate OMD

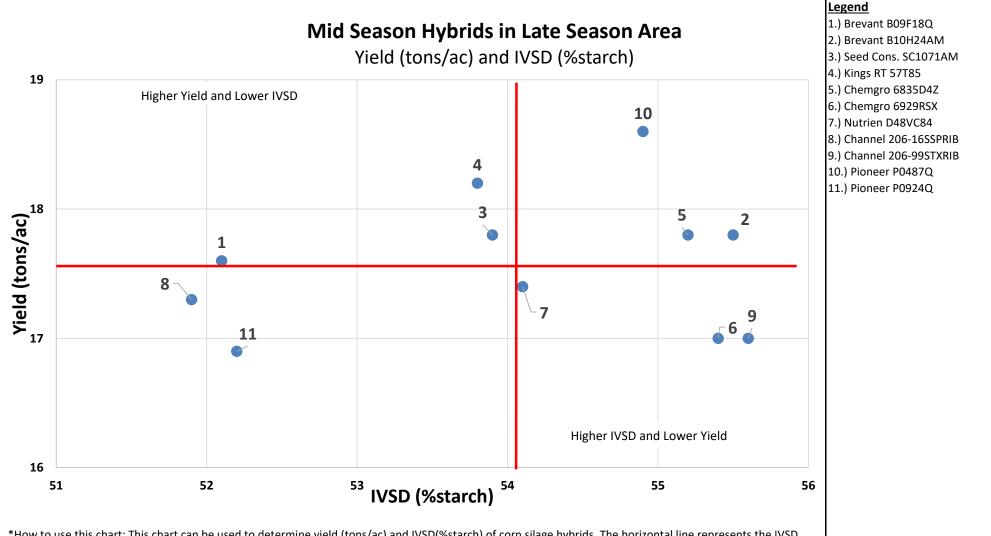
⁵ WC: Wet Chemistry

⁵ IVSD: Starch digestibiliy (% of starch) is analyzed by an in vitro wet chemistry method on samples ground through a 1-mm screen and incubated for 4 hours (IVSD).

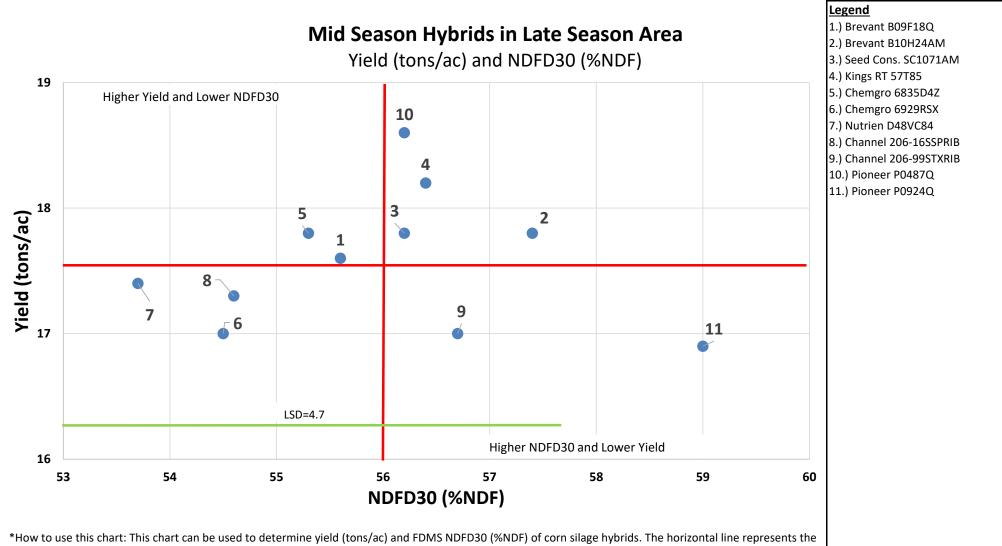
⁷ Fresh Yield: Silage yields are expressed on a 35 percent DM basis; all other parameters are expressed on a dry matter basis.

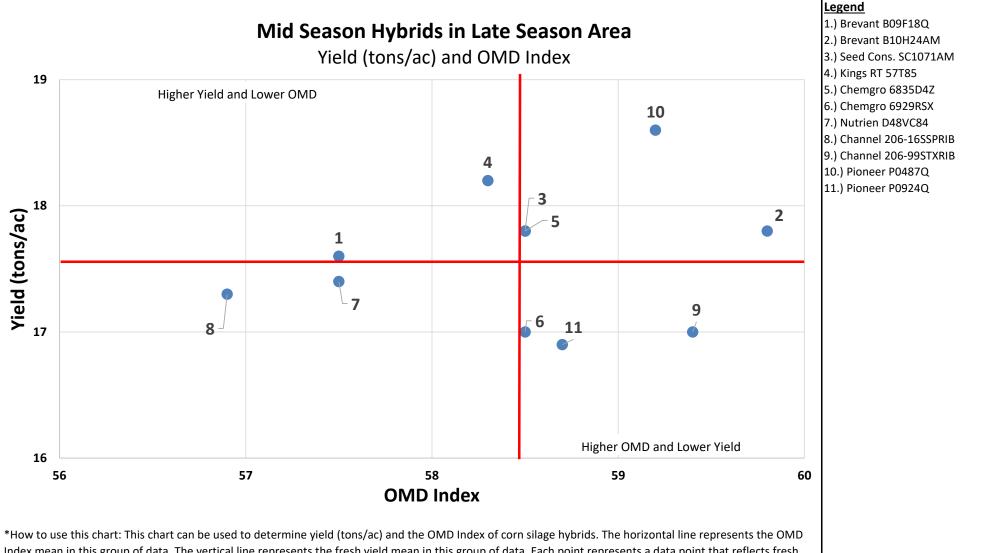

⁸OM Yield: silage yield (tons/ac) expressed on an organic matter (OM) basis.

DOM Yield: Yield of digestible organic matter.


¹⁰ OMD: Organic Matter Digestibility - Please see "OMD Story" tab for information on how to use this column

NS = Not Significant


Prepared by: Alex Hristov (PSU Animal Sciences), Sergio Francisco (PSU Animal Sciences), Chris Canale (Cargill), Hanna Wells(PDMP), Dayton Spackman (PSU Plant Science), and James Breining (PSU Plant Science).


that are significantly different at the 0.1 level. These lines can be moved around within the plot of data.

*How to use this chart: This chart can be used to determine yield (tons/ac) and IVSD(%starch) of corn silage hybrids. The horizontal line represents the IVSD mean in this group of data. The vertical line represents the fresh yield mean in this group of data. Each point represents a data point that reflects fresh yield to IVSD. The number beside the data point can be referenced to the hybrid name located within the legend. The LSD lines represent differences between hybrids that are significantly different at the 0.1 level. These lines can be moved around within the plot of data.

NDFD30 mean in this group of data. The vertical line represents the fresh yield mean in this group of data. Each point represents a data point that reflects fresh yield to NDFD30. The number beside the data point can be referenced to the hybrid name located within the legend. The LSD lines represent differences between hybrids that are significantly different at the 0.1 level. These lines can be moved around within the plot of data.

*How to use this chart: This chart can be used to determine yield (tons/ac) and the OMD Index of corn sliage hybrids. The horizontal line represents the OMD Index mean in this group of data. The vertical line represents the fresh yield mean in this group of data. Each point represents a data point that reflects fresh yield to the OMD Index. The number beside the data point can be referenced to the hybrid name located within the legend. The LSD lines represent differences between hybrids that are significantly different at the 0.1 level. These lines can be moved around within the plot of data.

Table Key #				Resistance to a Bt protein in the trait package has	Herbicide tolerant?	
ubic ney ii	Trait Family Product	Bt protein(s)	Marketed for control of:	developed in :		
Conv.	Conventional	None	None		No	
RR2	Roundup Ready 2	None	None		GT	
1	Agrisure GT	None	None		GT	
2	Agrisure 3010 & 3010A	Cry1Ab	ECB SWCB		GT LL	
3	Agrisure 3000 GT, 3011A	Cry1Ab, mCry3A	ECB_SWCB RW	RW	GT LL	
			BCW CEW ECB FAW SB SWCB		CT II	
4	Agrisure Viptera 3110	Cry1Ab, Vip3A	TAW WBC		GT LL	
5	Agrisure Viptera 3111	Cry1Ab, mCry3A, Vip3A	BCW CEW ECB FAW SB SWCB TAW WBC RW	RW	GT LL	
6	Agrisure 3120 E-Z Refuge	Cry1Ab, Cry1F	BCW ECB FAW SB SWCB	FAW WBC		
7	Agrisure 3122 E-Z Refuge	Cry1Ab,Cry1F, mCry3A, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW WBC RW		
8	Agrisure Viptera 3220 E-Z Refuge	Cry1Ab, Cry1F, Vip3A	BCW CEW ECB FAW SB SWCB TAW WBC		REFER TO BAG	
9	Agrisure Viptera 3330 E-Z Refuge	CryAb, Vip3A, Cry1A.105+CryAb2	BCW CEW ECB FAW SB SWCB TAW WBC		FOR SPECIFIC	
10	Agrisure Duracade 5122 E-Z Refuge	Cry1Ab, Cry1F, mCry3A, eCry3.1Ab	BCW ECB FAW SB SWCB RW	FAW WBC RW	LETTER CODE	
11	Agrisure Duracade 5222 E-Z Refuge	Cry1Ab, Cry1F, Vip3A, mCry3A, eCry3.1Ab	BCW CEW ECB FAW SB SWCB TAW WBC RW	RW		
12	Agricure Duracado 5222 E 7 Pofugo	Cry1A.105/Cry2Ab2, Cry1Ab, Vip3A,	BCW CEW ECB FAW SB SWCB	WCR	1	
12	Agrisure Duracade 5332 E-Z Refuge	mCry3A, eCry3.1Ab	TAW WBC RW			
13	Herculex 1 (HX1)	Cry1F	BCW ECB FAW SB SWCB	ECB FAW SWCB WBC		
14	Herculex RW (HXRW)	Cry34/35Ab1	RW	RW	LL	
15	Herculex XTRA (HXX)	Cry1F, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW SWCB WBC RW	RR2 (most)	
16	TRIsect (CHR)	Cry1F, mCry3A	BCW ECB FAW SB SWCB RW	ECB FAW SWCB WBC RW	LL RR2	
17	Intrasect (YHR)	Cry1F, Cry1Ab	BCW ECB FAW SB SWCB	FAW WBC	LL RR2	
18	Intrasect TRIsect (CYHR)	Cry1Ab, Cry1F, mCry3A	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
19	Intrasect Xtra (YXR)	Cry1F, Cry1Ab, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
20	Intrasect Xtreme (CYXR)	Cry1F, Cry1Ab, mCry3A, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
21	Leptra (VYHR)	Cry1F, Cry1Ab, Vip3A	BCW CEW ECB FAW SB SWCB TAW WBC		LL RR2	
22	AcreMax (AM)	Cry1F, Cry1Ab	BCW ECB FAW SB SWCB	FAW WBC	LL RR2	
	AcreMax (AM) AcreMax CRW (AMRW)	Cry34/35Ab1	RW	RW	LL RR2	
	AcreMax1 (AM1)	Cry1F, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW SWCB WBC RW	LL RR2	
	AcreMax Leptra (AML)	Cry1Ab, Cry1F, Vip3A	BCW ECB FAW SB SWCB TAW		LL RR2	
			WBC CEW			
	AcreMax TRIsect (AMT)	Cry1F, Cry1Ab, mCry3A	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
27	AcreMax Xtra (AMX)	Cry1F, Cry1Ab, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
	AcreMax Xtreme (AMXT)	Cry1F, Cry1Ab, mCry3A, Cry34/35Ab1	BCW ECB FAW SB SWCB RW	FAW WBC RW	LL RR2	
	YieldGard CB (YGCB)	Cry1Ab	ECB SWCB		RR2	
	YieldGard VT Rootworm (YGRW)	Cry3Bb1	RW	RW	RR2	
31	YieldGard VT Triple	Cry1Ab, Cry3Bb1	ECB SWCB RW	RW	RR2	
32	VT Double PRO VT Double PRO RIB complete	Cry1A.105, Cry2Ab2	CEW ECB FAW SB SWCB	CEW	RR2	
33	VT Triple PRO VT Triple PRO RIB complete	Cry1A.105, Cry2Ab2, Cry3Bb1	CEW ECB FAW SB SWCB RW	CEW RW	RR2	
34	Trecepta (or RIB complete)	Cry1A.105, Cry2Ab2,Vip3A	BCW CEW ECB FAW SB SWCB TAW WBC		RR2	
35	Smartstax Smartstax Refuge Advanced Smartstax RIB Complete	Cry1A.105, Cry2Ab2, Cry1F, Cry3Bb1, Cry34/35Ab1	BCW CEW ECB FAW SB SWCB RW	CEW WBC RW	LL RR2	
36	Smartstax Pro	Cry1A.105, Cry2Ab2, Cry1F, Cry3Bb1, Cry34/35Ab1, DvSnf7, dsRNA	BCW CEW ECB FAW SB SWCB RW	CEW WBC	LL RR2	
37	Smartstax Enlist	Cry1A.105, Cry2Ab2, Cry1F, Cry3Bb1, Cry34/35Ab1	BCW CEW ECB FAW SB SWCB RW	CEW WBC RW	LL RR2 E	
38	Powercore (or Refuge Advanced)	Cry1A.105, Cry2Ab2, Cry1F	BCW ECB FAW SB SWCB CEW	CEW WBC	LL RR2	
39	QROME (Q)	Cry1Ab, Cry1F, mCry3A, Cry34/35Ab1		FAW WBC RW	LL RR2	
	BCW = black cutworm	SB = stalk borer	GT = glyphosate tolerant		1	
	CEW = corn earworm	SWCB = southern corn borer	LL = Liberty Link, glufosinate tolerar	at		
			LINCITY LINK, SUUDSHIDLE LUIEI di	1 v	1	
				a tolerant		
	ECB = European corn borer FAW = fall armyworm	TAW = true armyworm WBC = western bean cutworm	RR2 = Roundup Ready 2, glyphosate	e tolerant		

Source:

https://www.texasinsects.org/bt-corn-trait-table.html

The OMD Index

The digestibility of nutrients in corn silage is paramount when determining nutritional value. Starch and NDF are responsible for much of the digestible energy in corn silage. In order to give dairy producers and nutritionist a tool to evaluate corn silage hybrids, we developed a new digestibility index, called the Organic Matter Digestibility Index (OMDI or just OMD), and is based on digestibility of protein, fat, NDF, and starch. The sum of which makes up approximately 86-88% of the organic matter in corn silage.

The OMD index represents the digestible portion of silage organic matter and is based on chemical analyses only. It does not predict dry matter intake or milk production, although numerous studies clearly show that digestibility of forage organic matter is directly related to lactation performance of dairy cows. The OMD index does not represent the absolute digestibility of silage organic matter, as this can be reliably determined only in experiments with live animals. But, OMD is representative of the potentially digestible organic matter of the whole plant and can be used to compare silage hybrids. Furthermore, simulation analyses using the Cornell Net Carbohydrate and Protein System (CNCPS v. 6.55; Cornell University, Ithaca, NY) show that OMD correlates reasonably well with model-predicted milk production of dairy cows fed a standard diet containing approx. 40% corn silage (dry matter basis).

How is the OMD Index Used?

Feeding value of corn silage is mostly associated with digestibility of NDF or starch. A long-standing goal of PDMP is to create a single measure of silage nutritive value using several variables associated with digestibility. Traditional variables, crude protein (accounted for fiber-bound nitrogen), NDF, starch, lignin, and fat, are combined with digestibility determinations for NDF (FDMS NDFD30*) and starch (IVSD; 4-hour, 1-mm grind). Once combined, these digestibility coefficients sum to predict OMD.

* FDMS: In 2022 Cumberland Valley Analytical Services introduced a new in vitro fiber digestibility system, called Feed Degradation Modeling System (FDMS), to predict NDFD for all major forage classes, including fresh corn silage. We determined the relationship between FDMS NDFD30 and wet chemistry NDFD30 was strong enough to use FDMS NDFD30, and avoid the extra charge for wet chemistry NDFD30. Hence, FDMS NDFD30 will be used to calculate OMD. Hence, FDMS NDFD30 = 100

The OMD Index is calculated using the following equation: OMDI (%) = {[(crude protein – NDFCP) × 0.89] + (total fatty acids × 0.75) + (starch × IVSD ÷ 100) + [(FDMS NDFom - lignin) × FDMS NDFD30 ÷ 100)]} ÷ [(crude protein – NDFCP) + total fatty acids + starch + (aNDFom – lignin)] × 100.

Where: OMDI (%) is Organic Matter Digestibility Index; crude protein, total fatty acids, starch, NDFCP (NDF-bound crude protein), aNDFom (ash-free basis, amylase-treated NDF), and lignin (ash-free) are expressed as % of corn silage dry matter; 0.89 is assumed (based on literature data) coefficient of digestibility of silage crude protein; 0.75 is assumed (based on literature data) coefficient of digestibility of silage total fatty acids; IVSD is starch digestibility (by wet chemistry at 4-hour and sample ground through a 1-mm sieve) expressed as % of starch; and FDMS NDFD30.

Use of OMDI: The OMD index is intended to represent the digestible portion of silage dry matter and is based on chemical analyses. OMD does not represent the absolute digestibility of silage organic matter, but it is representative of the potentially digestible organic matter and can be used when comparing silage hybrids. *Simply put, the higher the OMD value, the higher the overall expected digestibility of the silage.* OMD reflects the digestibility of key nutrients within the entire plant. Producers without carryover of silage should consider the interaction of OMD and DOM (digestible organic matter yield per acre) as yield of digestible organic matter will be equally as relevant as OMD.

Conclusion

Organic matter digestibility is not a new measure. For years, researchers and nutritionists have used digestibility estimates to formulate rations for dairy cattle. Today, integrating these data is a useful practice to gauge silage value and match hybrid to farm needs. Put simply, OMD measures whole plant digestibility. Emphasis is on digestibility of all main nutrients. In the end, we hope OMD serves to facilitate discussion among producer, seed consultant, and dairy nutritionist as to which hybrids offer the best nutrient value for dairy cows.